\qquad

Goal: Find an inverse of a function from a graph or equation.
Warm Up: Indicate how you could undo each operation or composite of functions.

1. Turning left and walking 30 yards, then turning around and
 walking 15 yards
2. Multiplying a number by $1 \frac{2}{3}$
3. Adding 40 to a number,. Then dividing the result by one-half
4. Taking the fifth power of a positive number, then taking it positive square root.

If the volume of a cube can be found using the formula $V=e^{3}$, where e is an edge length and you knew that a cube was $250 \mathrm{~cm}^{3}$, what would e be?

Finding the Inverse of a Function

A function can be considered as a set of ordered pairs in which each first element is paired \qquad . If you switch coordinates in the pairs, the resulting set of ordered pairs is called the \qquad _.

Example 1: Let $f=\{(-3,-5),(-2,0),(-1,3),(0,4),(1,3),(2,0),(3,-5)\}$. Describe the inverse of f. Is the inverse a function?

Practice 1:

Let $h=\{(1,1),(2,4),(3,9),(4,16)\}$.
a. Describe the inverse of h.
b. Is the inverse a function?
c. Describe h and its inverse in words.

Questions

If you are given a function, to find the inverse, all you need to do is
\qquad If the inverse is a function, then

Example 2:
a. Give an equation for the inverse of the function described by $y=-x^{2}+4$.
b. Sketch a graph of
$y=-x^{2}+4$ and the inverse on the same set of axes.
c. Is the inverse a function?

What do you notice about the graphs of the equations?

function$y=-x^{2}+4$		inverse$x=-y^{2}+4$	
x	y	\boldsymbol{x}	y
-2	0	0	-2
-1	3	3	-1
0	4	4	0
1	3	3	1
2	0	0	2
3	-5	-5	3
4	-12	-12	4

Practice 2:
a. Describe the graph of the function $y=2(x+5)^{2}-1$.
b. Give an equation for the inverse of the function $y=2(x+5)^{2}-1$.
c. Based on your answer to Part a, describe the graph of the inverse of the function. Is the inverse a function?
Activity:

1. If $a(x)=\frac{1}{x-3}+4$, describe what the function does to x
according to the order of operations.
2. Describe the process to "undo" $a(x)$. Call this function b and
write a formula for $b(x)$.
3. Evaluate $(a \circ b)(8)$. What do you notice?

Example 3: Consider the function f with $f(x)=\frac{1}{x-3}+4$.
a. Give an equation for the inverse of f.
b. Graph f and its inverse on the same set of axes.

Practice 3: Consider the function f with $h(x)=\frac{1}{x+8}-1$.
a. Give an equation for the inverse of h.
b. Is the inverse of h a function?

Summary:

